Ca(2+)-regulated structural changes in troponin.

نویسندگان

  • Maia V Vinogradova
  • Deborah B Stone
  • Galina G Malanina
  • Christina Karatzaferi
  • Roger Cooke
  • Robert A Mendelson
  • Robert J Fletterick
چکیده

Troponin senses Ca2+ to regulate contraction in striated muscle. Structures of skeletal muscle troponin composed of TnC (the sensor), TnI (the regulator), and TnT (the link to the muscle thin filament) have been determined. The structure of troponin in the Ca(2+)-activated state features a nearly twofold symmetrical assembly of TnI and TnT subunits penetrated asymmetrically by the dumbbell-shaped TnC subunit. Ca ions are thought to regulate contraction by controlling the presentation to and withdrawal of the TnI inhibitory segment from the thin filament. Here, we show that the rigid central helix of the sensor binds the inhibitory segment of TnI in the Ca(2+)-activated state. Comparison of crystal structures of troponin in the Ca(2+)-activated state at 3.0 angstroms resolution and in the Ca(2+)-free state at 7.0 angstroms resolution shows that the long framework helices of TnI and TnT, presumed to be a Ca(2+)-independent structural domain of troponin are unchanged. Loss of Ca ions causes the rigid central helix of the sensor to collapse and to release the inhibitory segment of TnI. The inhibitory segment of TnI changes conformation from an extended loop in the presence of Ca2+ to a short alpha-helix in its absence. We also show that Anapoe, a detergent molecule, increases the contractile force of muscle fibers and binds specifically, together with the TnI switch helix, in a hydrophobic pocket of TnC upon activation by Ca ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-induced conformational transition in the inhibitory and regulatory regions of cardiac troponin I.

Cardiac muscle activation is initiated by the binding of Ca(2+) to the single N-domain regulatory site of cardiac muscle troponin C (cTnC). Ca(2+) binding causes structural changes between cTnC and two critical regions of cardiac muscle troponin I (cTnI): the regulatory region (cTnI-R, residues 150-165) and the inhibitory region (cTnI-I, residues130-149). These changes are associated with a dec...

متن کامل

Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle.

Each heartbeat is triggered by a pulse of intracellular calcium ions which bind to troponin on the actin-containing thin filaments of heart muscle cells, initiating a change in filament structure that allows myosin to bind and generate force. We investigated the molecular mechanism of calcium regulation in demembranated trabeculae from rat ventricle using polarized fluorescence from probes on t...

متن کامل

Tropomyosin Flexural Rigidity and Single Ca2+ Regulatory Unit Dynamics: Implications for Cooperative Regulation of Cardiac Muscle Contraction and Cardiomyocyte Hypertrophy

Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca(2+), troponin, and tropomyosin on the thin filament. While Ca(2+) regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are alter...

متن کامل

Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments.

Dilated cardiomyopathy and hypertrophic cardiomyopathy (HCM) can be caused by mutations in thin filament regulatory proteins of the contractile apparatus. In vitro functional assays show that, in general, the presence of dilated cardiomyopathy mutations decreases the Ca(2+) sensitivity of contractility, whereas HCM mutations increase it. To assess whether this functional phenomenon was a direct...

متن کامل

Effects of Troponin T Cardiomyopathy Mutations on the Calcium Sensitivity of the Regulated Thin Filament and the Actomyosin Cross-Bridge Kinetics of Human β-Cardiac Myosin

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 14  شماره 

صفحات  -

تاریخ انتشار 2005